A comparison between QM/MM and QM/QM based fitting of condensed-phase atomic polarizabilities.

نویسندگان

  • C Ruben Vosmeer
  • Karin Kiewisch
  • Karlijn Keijzer
  • Lucas Visscher
  • Daan P Geerke
چکیده

Recently we reported a combined QM/MM approach to estimate condensed-phase values of atomic polarizabilities for use in (bio)molecular simulation. The setup relies on a MM treatment of the solvent when determining atomic polarizabilities to describe the response of a QM described solute to its external electric field. In this work, we study the effect of using alternative descriptions of the solvent molecules when evaluating atomic polarizabilities of a methanol solute. In a first step, we show that solute polarizabilities are not significantly affected upon substantially increasing the MM dipole moments towards values that are typically reported in literature for water solvent molecules. Subsequently, solute polarization is evaluated in the presence of a QM described solvent (using the frozen-density embedding method). In the latter case, lower oxygen polarizabilities were obtained than when using MM point charges to describe the solvent, due to introduction of Pauli-repulsion effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QM/MM-Based Fitting of Atomic Polarizabilities for Use in Condensed-Phase Biomolecular Simulation.

Accounting for electronic polarization effects in biomolecular simulation (by using a polarizable force field) can increase the accuracy of simulation results. However, the use of gas-phase estimates of atomic polarizabilities αi usually leads to overpolarization in condensed-phase systems. In the current work, a combined QM/MM approach has been employed to obtain condensed-phase estimates of a...

متن کامل

Analysis of polarization in QM/MM modelling of biologically relevant hydrogen bonds.

Combined quantum mechanics/molecular mechanics (QM/MM) methods are increasingly important for the study of chemical reactions and systems in condensed phases. Here, we have tested the accuracy of a density functional theory-based QM/MM implementation (B3LYP/6-311+G(d,p)/CHARMM27) on a set of biologically relevant interactions by comparison with full QM calculations. Intermolecular charge transf...

متن کامل

Quantum Mechanics-Molecular Mechanics Model Study of some Antibiotics and Vitamins in Gas Phases: Investigation of Energy and NMR Chemical Shift

The combination of Quantum Mechanics (QM) and Molecular Mechanics (MM) methods hasbecome alternative tool for many applications that pure QM and MM could not be suitable.The QM/MM method has been used for different type of problems, for example: structuralbiology, surface phenomena, and liquid phase. In this paper we have performed these methods forsome antibiotics and vitamins and then we comp...

متن کامل

Importance of van der Waals Interactions in QM/MM Simulations.

The importance of accurately treating van der Waals interactions between the quantum mechanical (QM) and molecular mechanical (MM) atoms in hybrid QM/MM simulations has been investigated systematically. First, a set of van der Waals (vdW) parameters was optimized for an approximate density functional method, the self-consistent charge-tight binding density functional (SCC-DFTB) approach, based ...

متن کامل

Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations.

The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential ene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 33  شماره 

صفحات  -

تاریخ انتشار 2014